
STUDY OF MULTIATOMIC MOLECULAR INTERACTION POTENTIALS 

IN LIQUIDS USING PERTURBATION THEORY. 

i. CALCULATION METHOD AND COMPARISON OF RESULTS WITH 

LENNARD-JONES POTENTIAL 

D. A. Tolstunov UDC 536.75;539.196.3 

An algorithm is presented for calculation of the thermodynamic properties of a 
liquid whose molecules interact in accordance with a specified model potential, 
using the methods of perturbation theory. 

i. Perturbation theory is at present one of the most dependable methods used in the 
physics of the liquid state, permitting description of the properties of dense liquids with 
satisfactory accuracy at sufficient distance from the critical point on the basis of the in- 
termolecular interaction potentials [!, 2]. For model systems with a Lennard-Jones interac- 
tion potential, many results have been obtained with perturbation theory, including calcula- 
tion of the liquid--gas coexistence curve [3]. Comparison of these calculations with pseudo- 
experimental data (obtained by computer simulation of the given system) and with data for Ar 
[4, 5] has shown good agreement between calculated and experimental values. 

The great majority of studies using perturbation theory have treated Lennard-Jones sys- 
tems, sometimes with various (for example, dipole) additions. Occasional studies which have 
used other potentials [6, 7] have not given very good results, which, in addition, are de- 
pendent on a large number of parameters. 

At the same time, as was shown in [8, 9], all liquids of the nonassociated class can be 
adequately described by a simple three-parameter spherically symmetric effective intermolecu- 
lar interaction potential of the form 

- - =  , ~ , (1) 
8 

where e = d/o, d is the size of the molecule as a whole, and e is the characteristic interac- 
tion energy (for globular molecules o is the Van der Waals diameter of the peripheral atom, 
d is the diameter of the globule, e is the depth of the atom-atom interaction potential well. 
For more complex molecules o and ~ must be treated as certain mean values). It is of im- 
portance that all parameters in Eq. (i) can be calculated commencing from the molecular 
structure, i.e., the potentials used are model ones. 

The present study will be dedicated to an investigation of a number of model potentials 
of the form of Eq. (i) using the methods of Wicks--Chandler--Andersen perturbation theory in 
the Verlet--Weis formulation [3]. The potentials used were constructed on the basis of the 
nennard-Jones potential, i.e., f(r/o, 0)=(r/o)-12--2(r/o) -6, 

Since, as is evident from the concrete form of the potentials to be studied (see, for ex- 
ample, [lOJ), the transition from ~ = 0 to ~=/=0 leads to a narrowing of the potential well 
and production of an impenetrable core, perturbation theory of the given type should converge 
better than with a Lennard-Jones system. The extremely detailed description of the calcula- 
tion algorithm presented in [3] makes writing and debugging the corresponding program rela- 
tively easy. Use of the more refined methods of [ii, 12] would require consideration of their 
applicability and determination of the concrete form of the corresponding equations. Although 
appearing quite promising, construction of a perturbation theory using a Lennard-Jones fluid 
as the reference system, for which a large amount of computation material has been accumulated 
(see, for example, [13]), will require separate study. At the same time, the Verlet--Weis 
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method, which is sufficiently reliable over a quite wide temperature range, gives interesting 
results, although of less value, with relatively low computer time expenditures. 

2. In the Verlet--Weis theory [3] a division of the potential, typical of Wicks--Chand- 
ler-Andersen perturbation theory, into a reference and perturbation potential is used: 

/u ( r )  + umi n, r ~ rmin 
gO (r) 

tO, r > rmi n 

I--Umin, r ~ rmj~ 

U (train) = --Umi n = r a i n .  

The f u n c t i o n  u o ( r )  i s  u sed  to  c o n s t r u c t  an e q u i v a l e n t  s y s t e m  of  r i g i d  s p h e r e s  w i t h  a d i -  
a m e t e r  dependent on temperature and density. This system acts as a reference; for its radial 
distribution function we use a corrected Wertheim-Tilet solution of the Percus--Yevick equa- 
tion [14, 15] for a system of rigid spheres. Then with the aid of the function y(r) = 
eBu(r)g(r) for the reference system we calculate the first-order perturbation for the free 
energy FI, for which approximants are constructed. By differentiation of the latter we also 
obtain the compressibility factor z = PV/RT. Approximants are also constructed for the 
various functions characterizing the reference system. 

The authors have introduced some changes into the technique of [3]. First, since the 
potentials to be studied differ significantly from Lennard-Jones, the quantities directly 
dependent on the form of the potential function were not considered by the approximants pre- 
sented in [3], but by exact expressions. At the same time, having calculated the reference 
system sphere diameter for given temperatures and densities, we can use the approximants of 
[3] to calculate the properties of the system. 

Second, to calculate the first-order perturbation to the free energy and the compressi- 
bility factor we have used the method of [16], in which integration of the potential with a 
weight of g(r) in coordinate space is replaced by integration in Laplace transform space. 
This method is simpler in realization and significantly more accurate, inasmuch as the 
Wertheim--Tilet solution [14, 15] can be written in a simple form, convenient for integration 
in just this space. 

Other than these changes, the method used here follows the algorithm of [3]. The inte- 
grals needed for calculation of the system thermodynamic characteristics were calculated with 
Gaussian quadratures [17, 18] for finite segments and with Gauss--Laguerre quadratures for 
semiinfinite intervals [17]. The number of nodes required was determined by the condition 
of constancy of the calculated integral value to a specified accuracy when the number of nodes 
is changed. It was shown that with use of 16 nodes in the Gaussian quadratures and 12 in the 
Gauss--Laguerre quadratures typical integral values could be calculated to a relative accuracy 
of i0-~-i0 -~ or better. 

Thus, using the method described above, for each state T, p we obtain values of F and z, 
i.e., the equation of state for the dense liquid. To compare the results of perturbation 
theory calculations with empirical material, it is very desirable to obtain the critical con- 
stants by perturbation theory. Unfortunately, the inaccuracy of perturbation theory in the 
region close to the critical point made it impossible to find these constants directly. 
Therefore, a method based on determination of the critical constants from the liquid--vapor 
coexistence curve, using empirical material, was chosen [8]. Moreover, obtaining the coex- 
istence curve was of interest in its own right, since its form is very sensitive to change 
in the characteristics of the intermolecular interaction [8]. 

To calculate the gas phase coexistence curve (whose properties cannot be obtained with 
perturbation theory) either a gas with nonzero second and higher virial coefficients, or an 
ideal gas was considered. 

The coexistence curve was constructued in the following manner. The liquid--vapor equi- 
librium condition 

T = T v ,  P = P v ,  ~ = ~ v  (2) 

(where the subscript V refers to the gas phase, and the subscriptless quantities describe the 
liquid) was rewritten in the form 
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Fig. i. T, P projection of coexistence curve: I) perturba- 
tion theory; 3) Lennard--Jones fluid [4]; 4) same [5]; 5) Ar 
[19]. T* = kT/E; p* = po ~. 

Fig. 2. P, T projection of coexistence curve: I) Perturba- 
tion theory, for vapor with B ~0; 2) same, but B ~ 0; 3) 
Lennard-Jones fluid [4]; 4) same [5]; 5) Ar [9], P~ =Po3/g ; 
T* = kT/c. 

T : T r o T ,  pz = PvZv , ~ F @ z  = ~F v - k z v .  (3 )  

For a gas with nonzero second and higher virial coefficients 

z V = 1 § pvB, ~F V -- (~Fv) id = pv B. 

(The superscript id indicates an ideal gas.) Considering that (BF) id = BFo(T) + in p, system 
(3) reduces to the equation 

~F~ @ z - -  ln ( Z ) 1 -  2BpV =: @ Bpv , {4) 

where 

Pv = (V4-~zP + 1 - -  1 ) / 2 B  {5) 

is the vapor density in the given approximation. Equation (4) with condition (5) was solved 
numerically. The solution consisted of values of p, PV, z, zv, BF, BFv, etc. for each tem- 
perature T. 

3. Computer Realization of the Method. The program to calculate thermodynamic proper- 
ties of liquids by the perturbation theory method was written in the input language of the 
TA-IM translator (subset of ALGOL-60) and tested on a BESM-4M computer. Preliminary testing 
of the program using the Lennard-Jones potential showed almost complete correspondence of 
intermediate calculation results with similar values from [3]. The time required for calcu- 
lation of one state (at given T, p) was 20-40 sec. Time required for calculation of a point 
on the coexistence curve was of the order of 3 min with a good initial approximation. The 
program comprises some 400 lines, so will not be presented here. 

4. Calculation Results for Lennard-Jones Potential. The coexistence curve calculated 
by perturbation theory methods is shown in the coordinates T,p and P~ T, respectively, in 
Figs. 1 and 2 (solid lines)~ The corresponding pseudoexperimental (Monte Carlo) data points 
are shown by symbols 3 ([4]) and 4 ([5]). The dashed curve of Fig. 2 is the coexistence 
curve calculated with the assumption of an ideal gas phase (i.e., B(T) ~ 0). The behavior of 
these curves demonstrates the necessity, and in the first approximation, the sufficiency, of 
considering only the second virial coefficient for calculation of vapor properties over a 
quite wide range of states. In Fig. 1 the difference between the solid and dashed curves is 
significantly less, so the latter is not shown. 
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The points 5 in Figs. 1 and 2 correspond to the equation of state of Ar [19], with pa- 

rameters ~/k = II8~ ~ = 0.382 nm [4]. These parameters give the best agreement of the ex- 

perimental data on Ar (second virial coefficient, viscosity) with corresponding calculated 
data using the Lennard-Jones potential. 

It can be concluded from study of Figs. 1 and 2 that perturbation theory adequately 
describes the properties of a liquid with a specified interaction potential, which for mono- 
atomic molecules in the first approximation may be the Lennard-Jones potential. 

5. Critical Constants. As was indicated previously, in the form used here perturbation 
theory cannot describe the critical state with satisfactory accuracy. Therefore, to calcu- 
late the critical constants of the model fluid the following algorithm [8] was used, based on 
generalization of empirical material. 

Let TI, 0~, PI, zl and T2, P2, P2, z2 be the characteristics of two points on the coex- 
istence curve. Then Pc can be defined with the aid of the expression 

Pi --1.1635 4- 1.7866 lgz~ 
Pc 1 4- 6.444 lg zi 

The subscript i may take on the values 1 or 2. The quantities T c and A are defined in the 
following manner: 

(6) 

where 

l g A = - - 0 . 4 5 7 5 - } - 0 , 5 1 2 5  T+ - -  1.20--0,35 To lgz+ _0.206(1gz+)2 ' 

T + 
0,03803 -4-" ]/1.8791 - -  1,5815 lgA 

T + = T1T2 " L[0"098805 4- ]/0.0097625 "~ ' -~  
Tt 4- T,2 

(7) 

(8) 

�9 . .---~ 

4-2.46737 T I 4 - T .  P,  ~)] | X Ig " - -  3,97261g , (9) 
T~ - -  TI P1 J 

lg P2 = 3.9726 lg. ~ 4- / - -~2  0.3252 4- 0.40529 T+T.2 ' (10) 

z § = p+/p2T § 

C a l c u l a t i o n  f o r  t he  L e n n a r d - J o n e s  p o t e n t i a l  g i v e s  0~c = 0 , 4 4 3 ;  T~ c = 1 . 2 8 ;  A = 3 , 9 7 ,  C a l c u l a -  
* = P*/n*T* = 0.294. tion with Eq. (I0) and T2 = Tc* gives P* = 0.1664. Correspondingly, z c c re c 

The pseudoexperimental values of the corresponding constants for the Lennard-Jones fluid com- 
prise: p* = 0.51; T* = 1.36; z c = 0.31 [3]. For Ar with the parameters indicated, p* = 
0.450; T* = 1.283; A = 3.94; P* = 0.1683; z* = 0.292. It is known [4] that the pseudoexperi- 
mental binodal differs significantly from the Ar binodal in the peak region, although the 
region far from the critical point is described well; in other words, the Lennard-Jones po- 
tential is inadequate for description of the near-critical region. In complete agreement 
with this, the critical constants calculated by the method of [8] from a portion of the co- 
existence curve far from the critical region for the Lennard-Jones fluid (which coincides 
well with the analogous segment of the curve for Ar coexistence) are close to the correspond- 
ing values for Ar, and not those for the Lennard-Jones fluid. 

From this we conclude that processing of the coexistence curve in the region sufficient- 
ly far from the critical point (z~ 10-3-10 -2 ) is a completely acceptable method of obtaining 
the critical constants of model fluids. 

NOTATION 

u, intermolecular interaction potential; r characteristic interatomic interaction ener- 
gy; o, peripheral atom size; d, molecular size; g(r), radial distribution function; T, tem- 
perature; ~, density; P, pressure; V, specific volume; z, compressibility factor; F, free en- 
ergy; ~, chemical potential; B(T), second virial coefficient; B, inverse temperature; Pc, Tc, 
Pc, Zc, critical constants. 
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